Ch. 2: Energy Bands And Charge Carriers In
Semiconductors



Bonding Forces in Solids

Solids are made of large number of atoms brings together by bonding
forces between these atoms

Individual atoms
& & Bonding
@ O

Bonding types in solids

¢ [onic Bonding

¢ Metallic Bonding

¢ Covalent Bonding

e Mmixed ionic- covalent bonding



lonic Bonding
A complete transfer of electron from one atom to another like NaCl
Na : 1522522p®3s1, Cl : 1522522p°3s23p°

Na* : 1s22s22p®, similar to Ne (inert atom)

Na* CI

Cl- : 1s22s22p%3s23p°, similar to Ar

Na*49 CI  Attractive force

Na*4p Na* Cl-€p Cl
Repulsive force




Metallic Bonding

- In a metal atom the outer electronic shell is partially filled,
usually by no more than three electrons

« Electrons in the outer electronic shell of atoms are loosely
bound and are very easy to become free electrons to
move around allm atoms in the solid.



Covalent Bonding

two atoms share one or more valence electron. each atom think it
has a closed shell like:

Si 1s%2s22p®3s23p?, 4 electrons in the outer shells
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Two electrons per bond

Ref. [

Diamond lattice unit cell, showing Covalent bonding in the Si crystal, viewed
the four nearest neighbor structure. along a <100> direction.

Compound semiconductors such as GaAs have mixed bonding, in
which both ionic and covalent bonding forces participate.




Energy Levels of Silicon

discrete energy levels for an atom is caused by the potential well around the
nucleus as shown

lonization or Zero Eﬁcrg}f Level
b Distance

% | Energy G

First Excitat{nn Level Y e
_—=Valence Level

Coulomb potential varies as (B {1
1/r, since force varies as 1/r? \ /| Solve Schrdédinger equation for
\ ! ;F the silicon atom to get wave-
functions or orbitals.

+14
MNucleus

Discrete energy levels arise from balance of attraction force between electrons and nucleus and
repulsion force between electrons - each electron will have it's own energy level



Linear Combinations of Atomic Orbitals (LCAQ) (1)

How the wave functions and energy levels are modified when
atoms are close to each other?

Wave function overlap Antibording orbital
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As the atoms come close by, Antisymmeric combination
the electron wave functions L
overlap, and the energy level aymdrjnetrlc combination
splits to accommodate the e ®

: q \ b]} hybridized orbital
electrons and satisfy Pauli's 2

exclusion principle.

Pauli’s exclusion principle:
Identical energy states split to
have an energy state for each
electron

When two atoms brought together - two distinct modes: 1- higher energy anti-bonding orbital o*
2- lower energy bonding orbital o



LCAO (2): Splitting of single
energy orbitals

8 separate atoms Bond together p single energy
level will split into B



LCAO (3)

For N separate interacting atoms,
each energy level in an isolated
atom will split into N levels.

If N is a very large number, then
the N levels will form an energy
band.

Bond together



LCAO (4)

Free states Free states
EVEG’ ————— EVE!G
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Eg /,_( :}——~ Allowed
Bandgaps — bands

«— Bound states
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Isolated atoms Crystal: Atomic spacing ~1-2 A

Note: Each energy state for an isolated atom gives rise to bands



Bands formation in Si

sp? Hybridization in Si

X

(sp3) hybrid

When individual atoms are very close together, the s and p-orbitals in
adjacent atoms overlap so much that they can form hybridized orbitals.
For example: 1s and 3p orbitals can mix to give sp® hybridized orbitals



Bands formation in Si
A ol 3p

f‘ 3s Electronic configuration of Si atom.

The 3s and 3p together
** ** f‘ 2p forms the outer shell

f+ 25
f# Is

Electron energy

When atoms become close
together - hybridization

\

“}

(a) Isolated Si (b} Si just before bonding

(a) lsolated Si atoms showing the outer shell orbitals. (b) In a saolid,
these orbitals hybridize to form 4 sp® orbitals, just before bonding.



Bands formation in Si

{a) (k] (e} id)

a"
C{,m Conduction bond

et o
s [
Si atom
Hybrid
orbitals BE | &

Figure 4. Formation of energy bands in Si when Si atoms approaches each other. (a)
Si atom with 4 electrons in outer shell form (b) 4 sp3hybrid orbitals. (c) The hybrid
orbitals form o and ¢” orbitals. (d) These orbitals overlap in a solid to form the

valence and conduction band.
15t 5p2 orbital in agiven Si atom interacts with sp2 orbital from other Si atom. 2" sp3 orbital

the given Si atom will interact with other sp2 orbital from other second Si atom, and so on
with other sp3 orbitalsin the given Si atom-> the 4 sp3 orbitalsin agiven Si atoms need 4
other S atom to form abonded Si solid 2 inasolid of N Si atoms, each atom is bonded to
four other Sl atoms. This interaction will create aband (V. B) from ¢ orbitals full of
electrons, and other band (C.B) from ¢” orbitals empty from electrons. These bands are

separated by an energy gap (Ey)



Bands formation in Si

Formation of Energy Bands in Si

Relative spacing of atoms

Begin sp® hybridization
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1) For N Si atoms, we
have 14 N electrons
distributed over 18 N
states as shown

2) When atoms
becomes close together
—> hybridization of outer
shell to sp3 orbitals

3) splitting of orbitals
into valence band (4 N
lower states full of
electrons) and
conduction band (4 N
upper states empty)

As distance reduces the bands first mix among themselves, then hybridize (mix),
and then for even lower distance splits into conduction and valence bands



Metals, Semiconductors, and Insulators
(Electron distribution at T = 0 K)

Ref. [1] &

Insulator Semiconductor Metal
* At T = 0 K, Semiconductor has same structure as insulator = filled valence band

and empty conduction band-> no current will occur when applying E field. This is
because no empty states in the valence band - no net motion of electrons.

Available Electron States mmmp Motion of Electrons mmmp Conduction
* The difference between insulators and Semiconductors is the E; (for
semiconducting Si Eg = 1.1 eV and for insulating diamond Eg = 5 eV).

« In semiconductors at room temperature, electrons can be excited thermally
across the energy gap into the conduction band.-> Conductivity occurs due to available
states in the C.B.

* Insulators has a negligible no. of free electrons at room temperature - almost no conductivity
 In metals, C.B and V.B. overlabs - electrons can move freely even at 0 K



Direct and Indirect Semiconductors:
Concept of k-space 1

Solution of Schrodinger Equation for an Electron in a Periodic Lattice is given as:

Electron wave function P, (x) = U(k ’ x)e;'ﬁx.r k is the propagation constant
X or called the wave vector

where hk the momentum of the electron, and U(k,, x) is a periodic potential
function based on the lattice periodicity.

Classical Quantum operatar
| o ik variable
Electron wave-function: ij[_.l'. ) ~ g X X
CRUDE UNDERSTANDING: o i
(assuming electrons are free, okl areruy jox
which actually they are not, but E _ad
they behave like free due to Kinetic : S LA
crystal forces): energy p,::’ i[—”—] L
< 2m\ jix 2m (x

So, the Kinetic energy aperator applied on the wave-function gives: h:!fj'flm

And the momentum operator gives: hk

Two different plots raised from plotting E and k = complex 3-D surface



Direct and Indirect Semiconductors:
Concept of k-space 2

In Energy - Momentum (E-k) Space: 2-D draw - parabola
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Note the parabolic relation between the energy and the wavefunction



Direct and Indirect Semiconductors

Direct Semiconductors: Electrons can make a smallest-energy (bandgap)
transition from the conduction band to the valence band without a change in
k value, i.e. without change in momentum. Such direct transitions give rise
to particles called Photons.

Indirect Semiconductors: Electrons cannot make the smallest-energy
transition from the conduction band to the valence band without a change in

k value (i.e. momentum which is hk ). Electrons must undergo a change of
k value first. The change of k value will result from either losing or gaining

energy from the lattice vibrations or Phonons. Since two particles are
needed for such a transition, the probability is very low. Therefore, the
probability of photon emission, i.e. light efficiency, will be very low. Electron-
hole pairs in indirect bandgap material recombine through other processes
to create more lattice vibrations or heat.

Both energy and momentum needs to be conserved during transitions. If
transition is vertical there is no momentum change, but if it is not vertical,
then there is a momentum change which needs to be accounted for.




Variation of Energy Bands with

Alloy Composition

l1I-V ternary and quaternary compounds varies in composition - Band structure
changes - change in E : Exa}mple GaAs doped with Al

| Ref.[1] \/ :
% - i -
x N I NC S - f ;
N \/ ~5 o
b N/ T Sl ¢ AlLGa, As
1.83eV = al
143 e o crluz .::4 ' 06 ' 4::3 L0
! -k -k Aluminum fraction, x
As x increase =2 all minimums moves up. But I
GaAs AlAs . g ) :
minima moves up = E, still direct until reaching
x=0.38 = E, becomes indirect
x <0.38 Al,Ga, As is a direct semiconductor.
x>=0.38 Al ,Ga, As is an indirect semiconductor.
X <0.45 GaAs,_ P, is a direct semiconductor.
x>=045 GaAs, P, is an indirect semiconductor.



Electrons and Holes

T=0K T>0K

Creation of

electron-hole
pair (EHP)

Conduction band has electrons
Valence band has holes
So conduction by both electrons

Thermal Excitation E
E, g

Conduction Band: Empty
Valence Band: Filled

S0, ho conduction

and holes

AN EMPTY CONDUCTION BAND OR A FILLED VALENCE BAND
WILL NOT CONDUCT ELECTRICITY

At T > 0°K, electron are free to move in the C.B. full of empty states.
In the V.B., electrons move from hole to hole = holes appear to move



Electrons in Valence Band
Analogy: Water in a Bottle

Electrons: Water Droplets

Holes: Air bubbles Electron energy £
. increases . ,
*Both empty bottle and filled bottle, \ ,
when tilted, will not displace water. : /
N\ /

*However, partially filled bottle when CB F A E
tilted, will allow movement of water.
*In valence band all states are filled D U >
(lowest energy level). Electron at j is «"‘7/0 0 O\ k

i VB j: j
matched by one at |’ ( hence no
current flows unless one is removed Hole energy
By excitation into conduction band) increases K=wave-vector in wave equation

« Hole energy increases downward since holes have charges opposite to those of
electrons. Primary reason why Holes are found in Valence Band (predominantly)



Mathematical description

Conductivity due to hole: positively charged particle

Every ] electron with velocity v; have corresponding electron J' with velocity -v; 2 current density
N for completely filled band, since
J= (’_—e)z v, = () NetCurrent electron occupation is
,- symmetric in bands

N
J= (l—(?)z V= (—3)"}- = eV for j'" hole (or missing electron).

i
In valence band, electron move from one hole to an other = hole appear to have
a net motion - hole current

Note that the velocity (v;) is governed by k, since k is the wave-vector in

the wave equation: i a2
w(x)= U (x)e™ 5
sl G
w ™~
Cell pericfgiic: function Traveling part of wave-function

Hence, current flow in semiconductor is due to motion of charge carriers
(electrons in the C.B. and holes in the V.B.)



Motion of Electrons in an Electric Field
E'ﬂeld = Electron K.E\l/

AE =eAV =eEAd

F-‘.Icmrﬂ(n tential)
_ cneray (POtentia
Porenrial i

Under an applied electric field E,
the entire band structure shifts
or equivalently the electron

Electron

gains a kinetic energy of eEAd oy
Electron will move from Ato B
gaining Kinetic energy and
loosing potential energy

eEAd = energy
.| gained

Hole energy increases downward
since a hole has the opposite charge
of an electron.

ole ial
energy (potential)

In valence band, Hole will move USRI T

opposite to elect_ron gamm_g Kinetic Under conservative force (Electric) electron will move opposite

energy and loosing potential to E-field loosing potential energy and gaining kinetic energy.

energy Hole will move with E-field loosing potential energy and gaining
kinetic energy




Concept of Effective Mass (1)

(a) Free Electrons  (In the free space)
p=myv =nk (de Broglie Wave)

- mo’  p° Nk Note: n=h/2n £
2 2m  2m
d°’E 1 e ]
g T s 2
dk~ m d E/dk
Meaning: electron energy is parabolic. The mass is k
Band for free electron

inversely related to the curvature of the parabola
(b) Electrons in Solid - Electrons interact with the periodic potential of the

crystal - they are not completely free
We waould want to treat them in a similar way as that of free electrans

dp d(mv dp  dlm'v o AR
p: ( ):FmraI:P‘snt—I"Fex! f - ( J:Ffrr Wlthb:n -
dr dt dit dt : 2m
5 Note: m* encapsulates the influence of lattice on the
e T wave-particle behavior of the electron
m = d EE ’rdkz ** Curvature of Band determines the effective mass




Concept of Effective Mass (2)

?k'.!

2m

e

So E-k diagram for electron inside semiconductor is given as: £ =

(c) Holes in Solid (Remember, holes are nothing but absence of electrons,
so imagine movement of holes as movement of entire ensemble of
electrons)

The curvature of d’E /dk” is positive at the conduction band minima,

but is negative at the valence band maxima. But considering that hole
energy increases in the negative direction as electron energy, the hole
mass is also positive at the valence band maxima.

NOTE: The effective mass is inversely proportional to the
second derivative or curvature of the bands. Thus higher
curvature or sharper bands will result in lower effective

mass. So holes have higher effective mass than electrons




Concept of Effective Mass (2)

- hence,
- m' is determined by the curvature of the E-k curve
- m' is inversely proportional to the curvature

[

Some effective masses in solids , XS
Ge Si GaAs ] \/

m,’ 0.55 m, 1.08 m, 0.067 m,

m,’ 0.37 m, 0.56 m,, 0.45 m,

143eV

k

m,"is the electron effective mass

m,"is the hole effective mass GaAs
m, is the electron rest mass * For GaAs band diagram, I has
m,, is the electron rest mass higher curvaturethan L and X -

lower effective massthanin L and X.
* Highest effective mass will be found
for hole at the valence band since it
has lowest curvature



Intrinsic Material

e A perfect semiconductor crystal with no impurities or lattice

defects is called an Intrinsic semiconductor.

e In such material there are no charge carriers at 0%, since the

valence band is filled with electrons and the conduction band is

empty. T=0K T>0K

l E, Thermal Excitation ] E,

Conduction Band: Emply Conduction band has electrons
Valence Band: Filled Valence band has holes



Intrinsic Material

At T > 0 °K - at Energy enough to broke the covalent
bond - generation of electron hole pair (EHP); the only
carri ers In intrinsic semi conductor

Since we have EHP = dectron concentration/cm? and hole concentration/cms3
are equal and they are called intrinsic carrier concentration > n=p=n



Intrinsic Material

 |f we denote the generation rate of EHPs as 9 (EHPcm3S)

and the recombination rate as r (EHP 35)
cm

At given temperature, equilibrium requires that: =0

Generation means creation of EHP and recombination means electron in
C.B. make a transition to empty hole in the V.B.

Each of these rates is temperature dependent. For example,

(T) increases when the temperature is ralsed
r=a,n,p,=a,n =g
n, and p, are electrons and holes concentrations at equilibrium.

In intrinsic material the n, = p, = n; with
NgPg = N
which is called the mass-action Iaw




Extrinsic Material

In addition to the intrinsic carriers generated thermally, it is possible to
create carriers in semiconductors by purposely introducing impurities
into the crystal. This process, called doping, is the most common
technique for varying the conductivity of semiconductors.

When a crystal is doped such that the equilibrium carrier concentrations
n, and p, are different from the intrinsic carrier concentration n,, the

material is said to be extrinsic.
Ny # Py # Ny but still ngp, = N2

n-type semicondutor: doping with impurity atoms from column
V - donor atoms (gives extra electron in the conduction band)
—> majority electrons and minority holes

p-type semiconductor: doping with impurity atoms from column
lIl = acceptor atoms atoms (takes electron from the valence
band leaving holes behind) - majority holes and minority
electrons
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Extrinsic Material

Donor atoms introduce donor energy levels (E )near the conduction
band so that the electrons exited to conduction band at low
temperature (about 50 °K)-> (ny,>>p, and ny>>n;)

V
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Extrinsic Material

Acceptor atoms introduce acceptor energy levels (E,) near the conduction
band so that the electrons exited from valence band at low temperature
(about 50 °K) leaving holes behind (p,>>n, and py,>> n,)

11}

B

Al

Ga

In Acceptor




Extrinsic Material




Extrinsic Material

 \We can calculate the binding energy by using the
Bohr model results, consider-ing the loosely
bound electron as ranging about the tightly
bound “core” electrons in a hydrogen-like orbit.

4

Mg
E= ——
2K *h*

n=1,K=4p ee,



Extrinsic Material

J Example:

Calculate the approximate donor binding energy for
Ge(g,=16, m,=0.12m,).

JANnswer: . 4
_ M9

~ 8(ee,)?h?
0.12(9.11x107*")(1.6x107")"

~ 8(8.85x10 2 x16)%(6.63x10 *)?
_1.02x102J = 0.0064eV

Thus the energy to excite the donor electron from n=1 state to the free
state (N=w) is =6meV.



Extrinsic Material

JAnswer: .
__Mng
E = 2 W2
8(e,e. ) h
- 0.12(9.11x107*")(1.6x107°)*
8(8.85x10 " x16)°(6.63x10**)?

=1.02x10"**J = 0.0064eV

Thus the energy to excite the donor electron from n=1 state to the free
state (N=w) is =6meV.




Carriers Concentrations

 |In calculating semiconductor electrical properties and
analyzing device behavior, it is often necessary to know
the number of charge carriers per cm3in the material.
The majority carrier concentration is usually obvious in
heavily doped material, since one majority carrier is
obtained for each impurity atom (for the standard
doping impurities).

* Electrons in solids obey Fermi-Dirac statistics.



The concept of Fermi Level (1)

The Fermi-Dirac distribution gives the probability of occupancy of a state at a
given temperature. Fermi level i1s analogous to the chemical potential

The Fermi level or Fermi energy 1s the energy, at which the probability of
occupation by an electron (or hole) 1s exactly Y.

1
| +exp[(E—E;)/kT]

Fermi-Dirac Distribution Function: JF(E)=

Things to note:
(a) Do not confuse this probability of occupancy in multiple electron system

with the probability of finding a single electron in space.

(b) E. denotes an energy level but does not imply that a state should be present
at that energy level to be occupied.

(c) Physical significance of E; is that it can be thought of as the mean of all
the electron energy distribution.(where you will most likely find an electron)



DISTRIBUTION OF ELECTRONS IN SEMICONDUCTORS

The Fermi Level (2)

The occupation probability at [ = L, A

f=0K
. 1
J(Ep)= = ! 4
|+exp[(E,—E, )/ kT]

1

- [+1 2 112
*T=0K,E<E; f(E)=1/(1+0)=1
( all states occupied)

*T=0K, ,E>ET f(E)=1/(1+00) =0
( all above Ef are empty)

Things to Note:

(1) The Fermi Function is symmetrical about E;. for all temperatures.

(2) At T - 0 K, this function has a simple rectangular form (binary occupational
probability).

(3) At T =0 K, availablc cnergy statc up to E; is filled with clectrons, and all
states above Ep arc emply.

(4) It 1s nol necessary Lhal Fermi level 1s close Lo or superpose on energy
states. In semiconductor, usually. Fermi level is in the band gap.



The Fermi Level
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The Fermi Level
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The Fermi Level (3)

f(EY 1 12 0

REY 1 12 0 fE) 1 12 0

rﬁao} Ant '“g’f (b) n-type Ref. [1] (c) p-type

(1) In intrinsic matcrial, the Fermi Icvel 1s closc to the middle of band gap.
(2) In n-type material. the Fermi level is close to the conduction band.
(3) In p-type material. the Fermi level is close to the valence band.

It 1s useful to think of Fermi level as a tool to determine electron/hole
occupation al the conduction or valence band for a doped as well as undoped
semiconductor 1n equilibrium.



Electron concentration in Conduction Band

N = If[E)N(E)dE = fo(EL, ] N(E)=—5 [IHEJ e (1)
El.
(derivation in Appendix IV)
N(E)dE - is the density of states (cm*) In the energy range dE.
The Ferm [unction can be simplified [or many (bul not all) cases as:

1
(Eo)=
S (Ee | +exp[(E. —E.)/kT]

~exp[—(E.—E;)/kT]  [Valid only for E, — E.>> KT]

- Ry = EVL' e}{p[—(Ec 32 EF)-’I!(T] N, =2[ zm:;:kT]h

Remember the use of etfective density of states NV, 1s very convenient, but does
not bring out the real picture. N, represenls the equivalent density ol states al
the conduction band edge (single energy level). Real density of states N(E) vary
with energy, but effective density of states N _ does not

=]

m, s the density-of-states effective mass for electrons and is the geometric
mean of the effective masses in the three directions.



Hole concentration in valence band

T

32 '
2 *kT f # 32 |
pu = jvr [l _f(En )] *Nv —Z( m;:f ] NTE): ”\f? (m? ] E'fz
| Tl
1

l— f(E,)=1-
1+exp[(E, —Eg)/kT]

~exp[—(Ez—E,)/kT]

- Po=N,exp|—(E—E,)/kT]

Effective density of states N, represents again the equivalent density of states
(single energy) as opposed to as distribution of states as a function of energy.

S

m , is the density-of-states effective mass for holes and is the geometric
mean of the effective mass, similar to the electrons.



Fermi Level and electron distribution at
Equilibrium
| | Fermi level at center

indicates equal

electron and hole
distribution

Fermi level near CB
iIndicates more

R
AN

i electrons in CB than
aipe holes in VB
WNrF |
= L Fermi level near CB
. e indicates less
: N electrons in CB than
ik — R e holes in VB
N L} fiip Loneeniration

Note: Here Lhe real density ol slales an eleclron distribution has been shown



carrier density

E, is the intrinsic fermi energy level
For intrinsic semiconductors (E. = E,):  located at the middle of the energy gap

n,= N, exp[~(E, - E,)/ kT] p, =N, exp[~(E,~E,)/ kT
n.p.=(N_exp[(E.—E,)/kT])(N, exp[~(E, -E,)/kT])
=N N, exp(—E, /kT) = n-

I

Now, i; = P, - n, = \/N‘_N‘, cxp(—E}: FEREY | sosssmaas (2)

For extrinsic semiconductors (E. > E, or < E)).
n,p,=(N_exp|(E,—E;) kT]|)N, exp|-(E.—E )/KkT])
=N_N exp|-(E,—E, )/kT]
=N_N, exp(—Eg [kT)

5 n, =n,cxp[(E,—E,)/kT]
= | BoPo =N | = | o xp[(E,—E,)/kT]

(Onlv valid under thermal equilibrium)




Electron and Hole Concentrations
at Equilibrium

 Example 3-4:
A Si sample is doped with 1017 As Atom/cm?3. What is
the equilibrium hole concentration p, at 300°K? Where
IS Eg relative to E;?

J Answer: |
Since Ny >> n,, we can approximate n,= N4 and

n?2  2.25x10%

Po = N, 10~

= 2.25x10°cm™

n=ne™ % wmmp E —E —kTIn" —00250In—20" _ 04076V
=I) [ —FE = — = U. = .
o - n 1.5x10%




3-3-2. Electron and Hole

Concentrations at Equilibrium
JAnswer (Continue) :

___________________________________________________ F
‘ lO.407eV
116 - —— e Ei

| EV




Temperature vs. carrier concentrations

As for n, and p,, n; is also more temperature dependent and hence is E¢

riK)
S0 4iHb 300 250
T I I I 1 I

10 16

“']H- L

n = M/;’\"(_Nt,-exp{—EE /2KT)

25% 10" em

lD'I! |

3 ]
o | e
i

G GazEn)
_.?I'i"\T ] e i

o Sl n(T)=2 , J (m,m )" " exp(-E, /2kT)
I,l. ;,_ | i

1wt E

lubz 1 1 ; 1 A 1 ‘

W TR

Note: The higher the bandgap, the lower the intrinsic carrier concentration




The dependence of carrier concentration in semiconductor on temperature
passes into three regimes shown in the figure

Majority carrier concentration vs. Inverse temperature for an
extrinsic secmiconductor. In the ionization regime, donor atoms arc partially
ionized. Then i the saturation regime where donors are [ully 1omzed and
carrier concentration is a constant. I'inally. at high temperatures there is
the intrinsic regime where it behaves like an intrinsic semiconductor. The
temperatures corresponding Lo these depend on the donor concentration.

lan s
Intrinsic
Extrinsic
- 1005 \
T |
E i lonization
— = |
= \
\
13 | \
10 \
‘l n
Ml \
11 L L | 1 i i
1 0 2 4 [ 8 10 12

1000/T (K)~



Compensation and Space Charge Neutrality

Space Charge Neutrality: In equilibrium
every space inside a uniform semiconductor
1S charge neutral, or in mathematical terms

Ps+N;=n,+N_
For electrons in the conduction band:

n, :Pu'*'(N;_N;)

[f the matenial 1s n-type n,>> p,, and all the Ref. [1]
impurities are ionized:

n,~N;,-N_~N,-N,

[f the material is p-type p,>> 1y, and all the
impurities are ionized:

PntN;_N;m'Na_Nd

Note: As doping is increased slowly, the Fermi level moves toward the respective
bands. and at some point may even penetrate the donor level and even the band.



Mobility (1)

(A) Motion of electrons and holes in solid at thermal equilibrium:
(1) Random thermal wandering

) Random scattering from the lattice and impurities
) No net motion of the group of N electrons, no preferred direction of motion
4) An individual electron has a net motion, however, there is always another

electron that has opposite net motion (reflected as k and —k state occupation in
the E-k diagram.

(2
(3
(

Mobility represents the ease of
57‘\ electrons and holes to flow through
\\ the crystal under an externally
applied electric field.

(B) Motion of electrons and holes in solid in the presence of electric or
maghnetic fields.

(1) Random thermal wandering + a net drift motion
(2) Random scattering from the lattice and impurities



Mobility (2)

In an external electric field, if electrons flow in a steady
state, the net acceleration of electrons will be zero.

E is the electric field

dp Px = total momentum of carriers
E; - Frﬂrm" o Ff.rr + Ent =) F,mr =—NngE  N=¢ electrons/cm3

g=electronic charge
F. . is the retarding force, which comes from collision and scattering.
dN(t) 1

Collision rate: — =—N(t)
oS T

T -represents the mean time between scattering events, is called mean
free time or momentum relaxation time.



Mobility (3)

The probability that any electron has a collision in the time interval dt is

g dN (t) dt The differential change of momentum due to collisions is
N(r) Tn d — (_ﬁdN(f))__‘ ﬂ- d—p ollisi :~—£:F.
P collision P N ( f) p TH d{ - L

d

—P i E’um." - E’w r F‘im - 0 = £ . "qE

dt | A
W) The average momentum per electron is < p> £ -4t B

n

- (p) gt
<U> ”‘* HI* uu

n ]




Mobility (4)

The average momentum is proportional to the applied force, which is qE. The
electrons, on an average, collide in time t_, so the momentum they achieve before
reaching steady state 1s given as qt_E

The average drift velocity <v> of electrons 1s then eiven as
= =

L

m m

n n

) =P Tup_ g

-

M, 1s the conductivity effective mass for electrons, which is the harmonic
mean of the band structure effective masses. Note that this 1s different from
the density-of-states effective mass, which is the geometric mean. p_ 1s the
electron mobility




Mobility (5)

(1) Current caused due to motion of only electrons in applied electric field:

hie AQ qn<u>AtAS G{;) O;’_ﬁg—j

CAS-Af ASAt

. o— O
> "thn < »
m,
. nq T, (only due to
From Ohm's Law: j =CL Wy O, = nt ~=qnl,  glectrons)

n

(2) Total current due to both electrons and holes:

j=aqn(v,)+ap(v,)=nqu, + pqu, JE=oF | | 0 =qnu, +qpp,

(4, is the hole mobility)

qrj’.’
Note for holes, <UP>= —E=upE
m

P




Resistance

R

V_ph & ]

I

wit

wt O

where O =gnu, +~qpu,

Tip: To calculate R first
find o from the electron
and hole concentration,
and then use the given
dimensions of the sample

Note: Both the electrons and the holes take part in the conduction process



Example # 1

Problem: Calculate the resistivity of intrinsic Si at 300 K

Solution:

For intrinsic Si: #, = 1350 and u,, = 480 cm*/V-s from Appendix III.

Thus, since ny = py = n;

o, =qly, +p,)n, =1.6x107°(1830)x1.5x10" = 4.39x10° (3 cmy”



FACTORS AFFECTING MOBILITY

Effect of Temperature on Mobility

Two major scattering N
mechanisms: :

1. lonized impurity
Scattering

i (em?/V-5)
(log scale)

Impurity scattering Lattice scattering

2. Lattice Scattering or
Phonon Scattering

T(K)
(log scale)

The overall mobility in presence of two or more independent scattering
mechanisms is given by (Mattheisen’s Rule):

| |
=—+—+...

H KB H




FACTORS AFFECTING MOBILITY

Effect of D .P’"Q on Moblllty

10 14 lu 17 ]'U'IE 10 19
I

e P (i o P TT])
T3FI!K B

* The mobility reduces for 1.}3;
higher doping due to 5
increased ionized impurity

n 1D

Silicon

scattering 102
1
« Compare the electron and % Gmm
hole mobility for Si, Ge, and & ;| {b, Ref. [1]
z 10°F
GaAs 2 0
=
102
m
10°F = (©)
&
4
2=
lﬂ:!;ﬂ]‘I | 1 r];]]j 1 1 1 Il;}lt I 1 ll}lT 1 | lﬂ]a lurg

Impurity concentration (cm )



FACTORS AFFECTING MOBILITY

Effect of High-Field on Mobility

Slope gives the

mobility only at _
low electric field\g\m

Ref. [1]

Electron drift velocity

<U> = —,u”E 10° saturates at high electric
_ ‘ fields for Si.
is valid only at low
field | ! . .
10? 103 104 10°
&(V/iem)

[. At high electric field, the velocity of electrons CANNOT increase linearly with
voltage due to increased scattering from the lattice vibrations (electron loses

| ]

the entire extra energy from
At a particular electric field

electric field immediately)
called the critical electric field, the mobility

becomes almost zero, and the velocity of the electrons become almost constant

w.r.t. the electric field



The Hall Effect (1)

Hall effect is used to find mobility and carrier concentration in materials
The establishment of E-field Ey is called Hall-Effect

Experimental Observation:

[f a constant current is flowing in x
direction and magnetic Field 1s in z
direction (perpendicular to holes

direction), holes are deflected /

then,

a voltage drop is built up in y or —y
direction, depending on the charge
(type) of carriers 1.e. electrons or holes.

In equilibrium, the electric field built in y direction is generated to balance
the magnetic field induced Lorentz force on the carriers.



The Hall Effect (2)

Lorentz Force (case considered for holes)

Force in y direction: | = qE +qu_xB_ But we know, F, = 0

- EJ, :U_\_B: ‘ EJ- — Ls B; - RHjJ:B

qPq

-P{J:

1 “__j.rB: L (Il /H’f)B‘__ . IJ:B:

Hall factor

R,  4qE,
(Use to find doping)
c _ 1l/ip

Now for holes, =

" gp, q(/qR,)
(Use to find Mobility)

qlV g/ w) E qtV g

R - L

qp,

RH

P

(positive for holes
and negative for
electrons)



The Hall Effect (3)

If the carriers are electrons, then the Hall voltage V/,

B (across Bar) and
Hall coefficient R, are negative.

| j.B. (I,/wt)B. IB.

N, = . =
qR,; qE

0

¥ qV.iz/w) qtV,

& . VP R,

gn, q(/qR,) | p

Thus, the sign of the Hall voltage can be used to determine the type of
charge, and the magnitude can be used to calculate carrier density and

mobility. Note sign of the Hall voltage is the same as the built in electric
field E
y



Example # 3

Problem: A sample of Si is doped with 10" phosphorus atoms/cm®. What is the type of this
semiconductor? What is the majority carrier concentration? What whould you expect to measure

for its resistivity? What Hall voltage would you expect in a sample 100 um thick if [, = 1.0 mA and
B.=1.0kG=10"Wb/em"?

Since phosphorus is element of the V th group its has 1 weakly bound electron in Si matrix. Thus,
this is donor impurity and semiconductor is n-type. Since N, =10" em , << N_ Fermi energy should

be sufficiently below E; (i.e. Ec — Er >> kT = 0.0259 eV and donor binding energy in Si). Thus
almost all the donor levels will be ionized and electrons will occupy states in conduction band. As
a result

n, =N,
From Fig. 3-23 of the textbook, the mobility of electrons is 700 cm?(Vs). Thus the conductivity is
(po is negligible)

oc=qun,=1.6-10"-700-10" =11.2(Q-em) .

The resistivity is

p=1/0=00893Q -cm
From (11-9), the Hall coefficient is

R, =—(gn,)' =—62.5em’ /C,

The Hall voltage is
. A 10°A-10"Whb/em®
Vi=""R, =

AR H A
f 10 -cm

(=62.5¢em’ /C) =-62.5uV



Invariance of the Fermi Level at Equilibrium

Material 2
Density of states N,(E)
Fermi Distribution f,(E)

Rate of charge movement from 1to 2 oc N (E) f,(E)- N,(E)[1-f,(E)]
Rate of charge movement from2to 1 o NE(E)f:(E)' N1 (E)[1- fl(E)]

At equilibrium both rates are equal (since no net movement of charge):

N(E)(E)- Ny (E)[1-fL(E)]= N, (E) [,(E)- N(E)[1- £ (E)]
dE,

- Si(E)= f,(E) So, in the limit of the regions very small y
. X

Messagce:

={)

In equilibrium Fermi level E . is same everywhere (zero gradient)



